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INtroduction

Small Language Models (SLMs) have recently shown strong performance in domain-specific NLP tasks while also being more resource-efficient than
Large Language Models (LLMs). However, due to dataset variability, they often require finetuning to meet task-specific performance needs. Data
annotation is one of the most time-consuming and costly aspects of this process [1], [2], especially in fields like clinical pathology where data
availability is limited [3]. While BERT-based models’ confidence scores have been used to identify model weaknesses [4], their use in guiding finetuning
remains underexplored. We propose Modelled lterative Confidence based Sample Selection (MICS?), a human-in-the-loop approach that leverages
BioBERT-generated confidence scores [5] to curate training data based on the model’s ability to handle specific clinical questions or features. MICS?
aligns with active learning and uncertainty sampling strategies used in CNN training [6].

Objectives

e Develop MICS2 method leveraging BioBERT's confidence scoring to optimize dataset selection for finetuning.
« Evaluate the accuracy of a MICS2 derived training dataset on an independent test set, comparing it with random sampling and bulk ("en masse")

finetuning approaches.

* Analyze computational costs for each strategy and assess the impact of model-led selection on overall efficiency.

Methods

e OH02 anonymised annotated free text pathology reports, written in
English, covering 28 clinical features were annotated mean = 350.8 %
83.4 reports per clinical feature) . A breakdown of each of the covered
features can be found in the bar plot in the Results section.

« Scan the QR code for an animated overview of the Methods detailed

Delow.

« For each clinical feature, the initial dataset is split, with 50 reports with a

oositively identifiable answer (Pl) to the gquestion “what is the status of
{feature}?” and b0 with an impossible to determine answer (lA)
partitioned as an independent test set.

« b permutations of the remaining data for each feature are then split into
subsets. 1) a permutation test set with 2b each of Pl and |A. 2) a
validation set with 25 each of Pl and IA, and the remaining reserve set
with all remaining annotated data.

« The data is run through a two-stage question answering/classification
porocess [/] to extract and classify the BIoBERT model’s answer. The
confidence scores from the question answering are used to then classify
the results and identify those the model performed worst on.

« [The worst answers from the validation set are added to the training set,
the model is trained, the trained model is run over the data, and the
cycle repeats. This is repeated until the model reaches an accuracy of
Q0% on the permutation test set .

« The final training set is then generated by concatenating the 5
permutation sets. A BioBERT model is trained with this set, and evaluated

Results

« The model trained on the compounded MICS? dataset was evaluated
against each of the independent test sets, achieving an average
accuracy of 98.46% [9b6% Cl = 0.6%] and required an average of /6.43
(£43.59) training examples per clinical feature.

* |[n comparison, an en masse approach that took all annotated data that
was not partitioned into the independent test sets and used that for
finetuning (242.63 £ 89.79 training examples per feature) resulted in a
model with 95.46% average accuracy [95% Cl = 1.6%]. This took an
average of 13.1b (£ 19.25) iterations per permutation.

* [he poorest performance was associated with a random sampling
approach. This took the same number of samples as was used in MICS~
(/6.43 £43.59 samples per feature) but randomly sampled them from the
remaining data not used in the test sets. This led to an Accuracy of
92.29%, [95% Cl = 1.91%].

« MICS? took significantly longer to run (~32 hrs and 34 mins for all clinical
features) compared to the en masse (~20 mins for all features) or random
sampling (~29 mins for all features) approaches.

« MICS? s significantly longer run time is due to the iterative nature of the
data sampling, and the requirement to retrain the model for each

Conclusions .

« MICS? produced by the BioBERT model to aid dataset curation helps to generate models
with higher accuracy despite smaller training sets.

* Model performance is not directly linked to larger finetuning dataset sizes, as
demonstrated by the poorer performance shown by the en masse approach.

« Equally, model performance does not peak with a certain dataset size as demonstrated
by the random sampling approach using the same finetuning set size as MICS?

« Using MICS? is significantly more time consuming and therefore more costly to run but
allows for curation of smaller finetuning sets without compromising model performance,
which is ideal when data is limited.
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Accuracy (%)

against a similar model trained using the en masse approach (all data
not used in the independent test set) or the random sampling approach
(randomly sampling each feature based on the number of training
samples required for the

MISC? method).

The evaluation was run on an AWS g6.2xlarge instance, utilising a
NVIDIA L4 GPU with 24 GiB of video memory
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Figure 1 - Diagram showing how the ground truth dataset (dark blue) is
partitioned in section A, with the independent test set shown in white, and
the data for each permutation in orange (permutation test set), green (initial
permutation validation set) and blue (permutation reserve set). Section B
shows the flow of reports from the validation to training set, and from
reserve to validation set between each iteration. C shows the final
construction of the test set from all permutations, the reserve set, and the
independent test set.

iteration which increases in length with each iteration due to the
increasing finetuning set size.
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Model Accuracy with 95% Confidence Interval  Fig. 2 (left) — Accuracy of MICS? (left, orange) compared with
T training a model with all remaining data (middle, blue), and

I randomly sampling the remaining data based off the
number of training samples used in the MICS? training set
(right, green)
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Fig. 3 (right) — Accuracy of MICS2 against the
independent test set for each of the clinical
features, with the average accuracy across all
features displayed with the dashed line
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