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Introduction

Small Language Models (SLMs) have recently shown strong performance in domain-specific NLP tasks while also being more resource-efficient than
Large Language Models (LLMs). However, due to dataset variability, they often require finetuning to meet task-specific performance needs. Data
annotation is one of the most time-consuming and costly aspects of this process [1], [2], especially in fields like clinical pathology where data
availability is limited [3]. While BERT-based models’ confidence scores have been used to identify model weaknesses [4], their use in guiding
finetuning remains underexplored. We propose Modelled lterative Confidence based Sample Selection (MICS?), a human-in-the-loop approach that

leverages BioBERT-generated confidence scores [b] to curate training data based on the model’s ability to handle specific clinical questions or
features. MICS? aligns with active learning and uncertainty sampling strategies used in CNN training [6].

Objectives

@ Develop MICS2 method leveraging BioBERT's confidence scoring to optimize dataset selection for finetuning.

@ Evaluate the accuracy of a MICS2 derived training dataset on an independent test set, comparing it with random sampling and bulk ("en masse")
finetuning approaches.
® Analyse computational costs for each strategy and assess the impact of model-led selection on overall efficiency.

Conclusions

Methods

9b0b2 anonymised annotated free text pathology reports, written in
English, covering 28 clinical features were annotated mean = 350.8 %
83.4 reports per clinical feature) . A breakdown of each of the covered
features can be found in the bar plot in the Results section.

Click here for an animated overview of the Methods detailed below.
For each clinical feature, the initial dataset is split, with 50 reports with
a positively identifiable answer (Pl) to the question “what is the status
of {feature}?” and 50 with an impossible to determine answer (lA)
partitioned as an independent test set.

b permutations of the remaining data for each feature are then split into
subsets. 1) a permutation test set with 2b each of Pl and |A. 2) a
validation set with 25 each of Pl and |A, and the remaining reserve set
with all remaining annotated data.

The data is run through a two-stage question answering/classification
orocess [/] to extract and classify the BioBERT model’s answer. The
confidence scores from the guestion answering are used to then
classify the results and identify those the model performed worst on.
The worst answers from the validation set are added to the training set,
the model is trained, the trained model is run over the data, and the
cycle repeats. This is repeated until the model reaches an accuracy of
90% on the permutation test set .

The final training set is then generated by concatenating the o
permutation sets. A BioBERT model is trained with this set and
evaluated against a similar model trained using the en masse approach
(all data not used in the independent test set) or the random sampling

Results

The model trained on the compounded MICS? dataset was evaluated
against each of the independent test sets, achieving an average
accuracy of 98.46% [95% Cl = 0.5%] and required an average of /6.43
(£43.59) training examples per clinical feature.

INn comparison, an en masse approach that took all annotated data that
was not partitioned into the independent test sets and used that for

finetuning (242.63 £ 89.79 training examples per feature) resulted in a

model with 95.46% average accuracy [95% Cl = 1.6%]. This took an
average of 13.1b (£ 19.2b) iterations per permutation.

The poorest performance was associated with a random sampling
approach. This took the same number of samples as was used in MICS?
(/6.43 £43.59 samples per feature) but randomly sampled them from the
remaining data not used in the test sets. This led to an Accuracy of
92.29%, [95% Cl = 1.91%].

MICS? took significantly longer to run (~32 hrs and 34 mins for all clinical

features) compared to the en masse (~20 mins for all features) or

random sampling (~29 mins for all features) approaches.

MICS? s significantly longer run time is due to the iterative nature of the
data sampling, and the requirement to retrain the model for each
iteration

MICS2 produced by the BioBERT model to aid dataset curation helps
to generate models with higher accuracy despite smaller training
sets.

Model performance is not directly linked to larger finetuning dataset
sizes, as demonstrated by the poorer performance shown by the en
masse approach.

Equally, model performance does not peak with a certain dataset size
as demonstrated by the random sampling approach using the same
finetuning set size as MICS2

Using MICS2 is significantly more time consuming and therefore more
costly to run but allows for curation of smaller finetuning sets without
compromising model performance, which is ideal when data is limited.

approach (randomly sampling each feature based on the number of
training samples required for the MISC? method).

@ [he evaluation was run on an AWS go.2xlarge instance, utilising a

NVIDIA L4 GPU with 24 GiB of video memory
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Figure 1 - Diagram showing how the ground truth dataset (dark blue) is
partitioned in section A, with the independent test set shown in white, and
the data for each permutation in orange (permutation test set), green (initial
permutation validation set) and blue (permutation reserve set). Section B
shows the flow of reports from the validation to training set, and from
reserve to validation set between each iteration. C shows the final

construction of the test set from all permutations, the reserve set, and the
independent test set.

which increases in length with each iteration due to the increasing finetuning set size.

100 Model Accuracy with 95% Confidence Interval Fig. 2 (left) — Accuracy of MICS? (left, Qrange)
T compared with training a model with all remaining data
I (middle, blue), and randomly sampling the remaining

90 1 data based off the number of training samples used in

the MICS? training set (right, green)
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This work uses anonymised data collected by NHS Trusts as part of routine care. We believe that the safe, transparent, and ethical use
of anonymised patient data is vital to improve health and care for everyone, and we would like to thank Oxford University Hospitals NHS
Foundation Trust and the Thames Valley and Surrey Secure Data Environment for their contribution. This research was supported by
the National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre. e views expressed are those of the
authors and not necessarily those of the NIHR or the Department of Health and Social Care.
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Fig. 3 (right) — Accuracy of MICS2 against the
Independent test set for each of the clinical
features, with the average accuracy across all
features displayed with the dashed line
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Introduction

performance In domain-specific NLP tasks while also being more

Small Language Models (SLMs) have recently shown strong

resource-efficient than Large Language Models (LLMs). However,
due to dataset variability, they often require finetuning to meet task-
specific performance needs. Data annotation is one of the most
time-consuming and costly aspects of this process (1], [2],
especilally In fields like clinical pathology where data availability Is
imited [3]. While BERT-based models’ confidence scores have been
used to identify model weaknesses [4], their use in guiding
finetuning remains underexplored. We propose Modelled lterative
Confidence based Sample Selection (MICS?), a human-in-the-loop
approach that leverages BioBERT-generated confidence scores [D]
to curate training data based on the model's ability to handle
specific clinical questions or features. MICS< aligns with active

learning and uncertainty sampling strategies used in CNN training
0]




Objectives

® Develop MICSZ method leveraging BiIoBERT's confidence scoring
to optimize dataset selection for finetuning.

® Ltvaluate the accuracy of a MICS2Z derived training dataset on an
iNndependent test set, comparing it with random sampling and
pbulk ("en masse”) finetuning approaches.

® Analyse computational costs for each strategy and assess the
impact of model-led selection on overall efficiency.




Methods

® 0002 anonymised annotated free text pathology reports, written
iIN English, covering 238 clinical features were annotated mean =
350.8 £+ 83.4 reports per clinical feature) . A breakdown of each
of the covered features can be found Iin the bar plot in the
Results section.

@ Click here for an animated overview of the Methods detailed
below.

@ For each clinical feature, the initial dataset is split, with 50 reports
with a positively identifiable answer (Pl) to the guestion “what is
the status of {feature}?” and 50 with an impossible to determine
answer (lA) partitioned as an independent test set.

® O permutations of the remaining data for each feature are then
split into subsets. 1) a permutation test set with 25 each of Pl and
|A. 2) a validation set with 25 each of Pl and |A, and the remaining
reserve set with all remaining annotated data.

® [he data is run through a two-stage guestion
answering/classification process |[/] to extract and classify the
SI0BER T model's answer. The confidence scores from the
guestion answering are used to then classify the results and
identify those the model performed worst on.

® [he worst answers from the valigation set are added to the
training set, the model Iis trained, the trained model is run over
the data, and the cycle repeats. [his is repeated until the model
reaches an accuracy of 96% on the permutation test set .

® [he final training set is then generated by concatenating the 5
oermutation sets. A BioBER [ model Is trained with this set, and
evaluated against a similar model trained using the en masse
approach (all data not used in the independent test set) or the
random sampling approach (randomly sampling each feature
based on the number of training samples required for the MISC-
method).

® [he evaluation was run on an AWS gb.2xlarge instance, utilising a
NVIDIA L4 GPU with 24 GIB of video memory
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Methods

® [he final training set is then generated by concatenating the 5
permutation sets. A BioBER [ model Is trained with this set and
evaluated against a similar model trained using the en masse
approach (all data not used in the independent test set) or the
random sampling approach (randomly sampling each feature
based on the number of training samples required for the MISC?
method).

® [he evaluation was run on an AWS gb.2xlarge instance, utilising a
NVIDIA L4 GPU with 24 GIB of video memory
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Figure 1 - Diagram showing how the ground truth dataset (dark
blue) is partitioned in section A, with the independent test set
shown in white, and the data for each permutation in orange
(permutation test set), green (initial permutation validation set) and
blue (permutation reserve set). Section B shows the flow of reports
‘from the validation to training set, and from reserve to validation
set between each iteration. C shows the final construction of the

test set from all permutations, the reserve set, and the
iIndependent test set.
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Results

® [he model trained on the compounded MICS? dataset was
evaluated against each of the independent test sets, achieving
an average accuracy of 98.46% [95% Cl = 0.5%]| and required an
average of /6.43 (£43.59) training examples per clinical feature.

®@ [N comparison, an en masse approach that took all annotated
data that was not partitioned into the independent test sets ano
used that for finetuning (242.63 £ 89./9 training examples per
feature) resulted in a model with 95.46% average accuracy [95%
Cl =1.6%]. This took an average of 13.15 (£ 19.25) iterations per
oermutation.

®@ [Nhe poorest performance was associated with a random
sampling approach. [ nis took the same number of samples as
was used in MICS?(76.43 +43.59 samples per feature) but
randomly sampled them from the remaining data not used in the
test sets. This led to an Accuracy of 92.29%, [995% Cl| = 1.91%].

e MICS? took significantly longer to run (~32 hrs and 34 mins for all
clinical features) compared to the en masse (~20 mins for all
features) or random sampling (~29 mins for all features)
approaches.

e MICS? s significantly longer run time is due to the iterative nature
of the data sampling, and the reguirement to retrain the moael
for each iteration which increases in length witn each iteration due to
the Increasing finetuning set size.

Fig. 2 (left) — Accuracy of MICSZ2 (left, orange) compared with

0o Model Accuracy with 95% Confidence Interval training a model with all remaining data (middle, blue), and
randomly sampling the remaining data based off the number
I I of training samples used in the MICSZ2 training set (right, green)
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Fig. 3 (right) — Accuracy of MICS2 against the independent
test set for each of the clinical features, with the average
accuracy across all features aisplayed with the dashed line
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Conclusion

e MICS2 produced by the BioBERT model to aid dataset curation
helps to generate models with nigher accuracy despite smaller
training sets.

® Model performance is not directly linked to larger finetuning
dataset sizes, as demonstrated by the poorer performance
snown by the en masse approacn.

® Lqgually, model performance does not peak with a certain
dataset size as demonstrated by the random sampling approach
using the same finetuning set size as MICS2

® Using MICSZ Is significantly more time consuming and therefore
more costly to run but allows for curation of smaller finetuning
sets without compromising model performance, which is ideal
when data is limited.
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