
Real-world Indirect treatment comparisons (ITCs) allow for the generation of relative-efficacy 

evidence in settings where implementation of a randomised controlled trial is infeasible [1,2].

However, real-world ITCs with time-to-event outcomes, such as presence of disease 

progression, are susceptible to measurement error bias.

Sources of measurement error arise through differences between arms in assessment

timing – inducing assessment time bias (ATB) – or through error-prone assessment – 

inducing outcome misclassification bias (OMB) [3, 4].

Current methods for addressing measurement error are often limited to exclusively one 

source of error and lack generalisability to simultaneously address other forms of bias, e.g. 

confounding.

Comprehensive approaches to bias mitigation requires statistical methods capable of 

complex model specification without compromising inferential tractability.

Approximate Bayesian computation (ABC) has been proposed for tractable bias-mitigated 

inference in the presence of complex biases [5, 6].

Develop an approximate Bayesian computation framework for measurement error

mitigation in real-world indirect treatment comparisons with time-to-event outcomes.

Assess the proposed ABC framework’s ability for bias-mitigated estimation of relative 

treatment effects.

Implement a simulation study which performs this assessment under varying degrees of 

measurement error.

Our proposed ABC framework assumes an ITC with gold-standard assessment in the 

treatment arm and error-prone assessment in the control arm.

We assume error-prone control assessment 

manifests itself as a patient-specific delay in 

detection, 𝜏𝑖 ~ Exp(𝜇), affecting a proportion

𝜑 of patients (Figure 1).

Our proposed framework implements 

an ABC-rejection sampler for 

bias-mitigation with a user-specified 
survival model 𝑓 (Figure 2).

Approximate Bayesian Computation Framework

Figure 1: Error-prone control assessment.
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Summary Statistics

ABC-simulated treatment and control arms are 

compared with their observed counterpart.

Cumulative number of events are

computed up to user-specified quantiles 

(𝑞1, 𝑞2, 𝑞3), e.g. 25th, 50th, 75th (Figure 3).

When combined with the number of censored 

patients, 𝑁𝑐, vectors (𝑁1, 𝑁2, 𝑁3, 𝑁𝑐) are 

compared between datasets using the L1 norm:

Inverse probability of treatment (IPT) - weights 

can be applied to summary statistics to adjust 

for confounding.

Simulation Study Assessment

Two-arm confounded survival data was simulated 

under Eqs. (1) and (2) with measurement error,
where the effect measure is the hazard ratio (HR).

12 scenarios were considered through varying

𝛽1 = log HR , average length of delay (1/𝜇), 
and control assessment cadence (3 or 6 months).

Treatment assessment cadence, 𝜑, and exp(𝛽0), 
were fixed to 1 month, 0.3, and 0.11, respectively.

200 data sets were simulated under each scenario 

and ABC estimates compared with naive Markov chain 

Monte Carlo (MCMC) estimates which ignored 

measurement error and confounding. 

IPT-weighting of observed summary statistics was

implemented to adjust for confounding by 𝑢𝑖.

2,000 posterior samples were extracted when applying 

either method. 

𝑦𝑖 ~ Exp(𝜆𝑖), 𝑖 = 1, … , 400,     (1)               

𝜆𝑖 =  exp(𝛽0 + 𝛽1𝑧𝑖 + 0.26𝑢𝑖), 

Figure 2: Posterior sampling of bias-mitigated effect estimates through ABC sampling.
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Figure 3: Comparison between datasets.
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Our proposed ABC framework provides a unified approach for successful bias-mitigated 

estimation of relative treatment effects under both measurement error and confounding

In practice, careful calibration would be required to ensure successful application of the ABC 

framework, with external information regarding measurement error dynamics required to 

inform the magnitude of delay and its prevalence.

These dynamics can be characterised either through assessment of a subset of data for 

which both gold-standard and error-prone assessment are observed, or through expert 

clinical elicitation.

Future analyses will apply the ABC framework to empirical data and consider application of 

the ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. 

selection bias arising from left truncation.

With 𝜖 = 45, ABC 

acceptance rates ranged

from 0.16% – 0.35%.

In Table 1, ABC bias

ranged from -0.028 – 0.106

compared to 0.354 – 0.499 

under naive MCMC. 

As the severity of 

measurement error 

increased, ABC performance 

decreased (Figure 4, top left) 

but was still superior 

compared to naive MCMC.  

Figure 4: Comparison of posterior mean estimates1 of the 

log(HR) between the ABC framework and naive MCMC.

Table 1: Comparison of log(HR) posterior estimates between the ABC framework and naive MCMC.

Simulation 

scenario1

Bias2,3 Posterior SD3,4 95% credible interval

coverage rate

log(HR) 1/𝜇5 ABC Naive ABC Naive ABC Naive

0 3 -0.028 0.354 0.170 0.101 0.98 0.04

6 0.058 0.429 0.163 0.100 0.98 0.01

log(0.8) 3 -0.019 0.373 0.164 0.100 0.98 0.02

6 0.062 0.433 0.157 0.101 0.97 0.00

log(0.2) 3 0.016 0.411 0.157 0.113 0.95 0.00

6 0.106 0.499 0.152 0.114 0.97 0.00

1: Control cadence = 3 months, 2: Bias defined as estimate – truth, 3: Averaged over 200 simulations, 

4: Standard deviation, 5: Average delay in detection.

𝑢𝑖 ~ Bernoulli(0.5) ,  𝑧𝑖 = 0, 1,

Survival Model

Prior Specification

𝛽1 ~ 𝑁 0, 1 ,

exp(𝛽0) ~ 𝑈 0.058, 0.693 ,

𝜇 ~ 𝑈 0.1, 1 ,

𝜑 ~ 𝑈(0.2, 0.5).
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ATB is simulated in step 3 by rounding survival to the nearest assessment time. Comparison 

of datasets in step 4 is performed using a 4-dimensional summary statistic (see below).

Iteration of steps 1-4 outputs a posterior sample for 𝜽 which is uncontaminated by 

measurement error and hence represents a bias-mitigated effect estimate. 
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Real-world Indirect treatment comparisons (ITCs) allow for the 

generation of relative-efficacy evidence in settings where 

implementation of a randomised controlled trial is infeasible [1,2].

However, real-world ITCs with time-to-event outcomes, such as 

presence of disease progression, are susceptible to measurement 

error bias.

Sources of measurement error arise through differences between 

arms in assessment timing – inducing assessment time bias (ATB) – 

or through error-prone assessment – inducing outcome 

misclassification bias (OMB) [3, 4].

Current methods for addressing measurement error are often limited 

to exclusively one source of error and lack generalisability to 

simultaneously address other forms of bias, e.g. confounding.

Comprehensive approaches to bias mitigation requires statistical 

methods capable of complex model specification without 

compromising inferential tractability.

Approximate Bayesian computation (ABC) has been proposed for 

tractable bias-mitigated inference in the presence of complex biases 

[5, 6].



Develop an approximate Bayesian computation framework for 

measurement error mitigation in real-world indirect treatment 

comparisons with time-to-event outcomes.

Assess the proposed ABC framework’s ability for bias-mitigated 

estimation of relative treatment effects.

Implement a simulation study which performs this assessment under 

varying degrees of measurement error.



Our proposed ABC framework assumes an ITC with gold-standard assessment in the treatment arm and 

error-prone assessment in the control arm.
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Figure 2: Posterior sampling of bias-mitigated effect estimates through ABC sampling.

ATB is simulated in step 3 by rounding survival to the nearest assessment time. Comparison of 

datasets in step 4 is performed using a 4-dimensional summary statistic (see next page).

Iteration of steps 1-4 outputs a posterior sample for 𝜽 which is uncontaminated by measurement 

error and hence represents a bias-mitigated effect estimate. 
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Figure 1: Error-prone control assessment.
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We assume error-prone control 

assessment manifests itself as a 

patient-specific delay in detection, 

𝜏𝑖 ~ Exp(𝜇), affecting a proportion 𝜑 of 

patients (Figure 1).

Our proposed framework implements 

an ABC-rejection sampler for bias-

mitigation with a user-specified 

survival model 𝑓 (Figure 2).



Summary Statistics

ABC-simulated treatment and control arms 

are compared with their observed 

counterpart.

Cumulative number of events are computed 

up to user-specified quantiles 

(𝑞1, 𝑞2, 𝑞3), e.g. 25th, 50th, 75th (Figure 3).

When combined with the number of 

censored patients, 𝑁𝑐, vectors(𝑁1, 𝑁2, 𝑁3, 𝑁𝑐) 

are compared between datasets using the 

L1 norm:

Inverse probability of treatment (IPT) - 

weights can be applied to summary 

statistics to adjust for confounding.

Simulation Study Assessment

Two-arm confounded survival data was simulated 

under Eqs. (1) and (2) with measurement error, 
where the effect measure is the hazard ratio (HR).

12 scenarios were considered through 

varying 𝛽1 = log HR , average length of delay 

(1/𝜇), and control assessment cadence (3 or 6 
months).

Treatment assessment cadence, 𝜑, and exp(𝛽0), 
were fixed to 1 month, 0.3, and 0.11, respectively.

200 data sets were simulated under each scenario 

and ABC estimates compared with naive Markov 

chain Monte Carlo (MCMC) estimates which 

ignored measurement error and confounding. 

IPT-weighting of observed summary statistics was 

implemented to adjust for confounding by 𝑢𝑖.

2,000 posterior samples were extracted when 

applying either method. 

Follow-up

𝑑 = 𝑁1 − 𝑁1 + 𝑁2 − 𝑁2 + 𝑁3 − 𝑁3 + |𝑁𝑐 − 𝑁𝑐|.
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𝑦𝑖 ~ Exp(𝜆𝑖), 𝑖 = 1, … , 400,     (1)               

𝜆𝑖 =  exp(𝛽0 + 𝛽1𝑧𝑖 + 0.26𝑢𝑖), 

Pr 𝑧𝑖 = 1 𝑢𝑖) = logit−1( − 1 + 2𝑢𝑖).     (2)

𝑢𝑖 ~ Bernoulli(0.5) ,  𝑧𝑖 = 0, 1,

Survival Model

Prior Specification

𝛽1 ~ 𝑁 0, 1 ,

exp(𝛽0) ~ 𝑈 0.058, 0.693 ,

𝜇 ~ 𝑈 0.1, 1 ,

𝜑 ~ 𝑈(0.2, 0.5).
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With 𝜖 = 45, ABC acceptance rates 

ranged from 0.16% – 0.35%.

In Table 1, ABC bias ranged

from -0.028 – 0.106 compared to 

0.354 – 0.499 under naive MCMC. 

As the severity of measurement error 

increased, ABC performance 

decreased (Figure 4, top left) 

but was still superior compared to 

naive MCMC.  

Figure 4: Comparison of posterior mean estimates1 of the 

log(HR) between the ABC framework and naive MCMC.

Table 1: Comparison of log(HR) posterior estimates between the ABC framework and naive MCMC.

Simulation 

scenario1

Bias2,3 Posterior SD3,4 95% credible interval

coverage rate

log(HR) 1/𝜇5 ABC Naive ABC Naive ABC Naive

0 3 -0.028 0.354 0.170 0.101 0.98 0.04

6 0.058 0.429 0.163 0.100 0.98 0.01

log(0.8) 3 -0.019 0.373 0.164 0.100 0.98 0.02

6 0.062 0.433 0.157 0.101 0.97 0.00

log(0.2) 3 0.016 0.411 0.157 0.113 0.95 0.00

6 0.106 0.499 0.152 0.114 0.97 0.00

1: Control cadence = 3 months, 2: Bias defined as estimate – truth, 3: Averaged over 200 simulations, 

4: Standard deviation, 5: Average delay in detection.
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Our proposed ABC framework provides a unified approach for successful bias-mitigated estimation of relative treatment effects under both measurement error and confounding

In practice, careful calibration would be required to ensure successful application of the ABC framework, with external information regarding measurement error dynamics required to inform the magnitude of delay and its prevalence.

These dynamics can be characterised either through assessment of a subset of data for which both gold-standard and error-prone assessment are observed, or through expert clinical elicitation.

Future analyses will apply the ABC framework to empirical data and consider application of the ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. selection bias arising from left truncation.

Our proposed ABC framework provides a unified approach for successful bias-mitigated estimation 

of relative treatment effects under both measurement error and confounding

In practice, careful calibration would be required to ensure successful application of the ABC 

framework, with external information regarding measurement error dynamics required to inform the 

magnitude of delay and its prevalence.

These dynamics can be characterised either through assessment of a subset of data for which 

both gold-standard and error-prone assessment are observed, or through expert clinical elicitation.

Future analyses will apply the ABC framework to empirical data and consider application of the 

ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. selection bias 

arising from left truncation.



Our proposed ABC framework provides a unified approach for successful bias-mitigated estimation of relative treatment effects under both measurement error and confounding

In practice, careful calibration would be required to ensure successful application of the ABC framework, with external information regarding measurement error dynamics required to inform the magnitude of delay and its prevalence.

These dynamics can be characterised either through assessment of a subset of data for which both gold-standard and error-prone assessment are observed, or through expert clinical elicitation.

Future analyses will apply the ABC framework to empirical data and consider application of the ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. selection bias arising from left truncation.
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