# Mitigating Measurement Error in Real-World Indirect Treatment Comparisons with Time-To-Event Outcomes: An Approximate Bayesian Computation Approach



Steven Soutar<sup>1</sup>, Joseph E, O'Reilly<sup>1</sup>, Jamie Wallis<sup>1</sup>, and Lewis Carpenter<sup>1</sup>

[1]: Arcturis Data, Building One, Oxford Technology Park, Technology Drive, Kidlington, OX5 1GN UK | steven.soutar@arcturisdata.com

### Introduction



- Real-world Indirect treatment comparisons (ITCs) allow for the generation of relative-efficacy evidence in settings where implementation of a randomised controlled trial is infeasible [1,2].
- However, real-world ITCs with time-to-event outcomes, such as presence of disease progression, are susceptible to measurement error bias.
- Sources of measurement error arise through differences between arms in assessment timing – inducing assessment time bias (ATB) – or through error-prone assessment – inducing outcome misclassification bias (OMB) [3, 4].
- Current methods for addressing measurement error are often limited to exclusively one source of error and lack generalisability to simultaneously address other forms of bias, e.g. confounding.
- Comprehensive approaches to bias mitigation requires statistical methods capable of complex model specification without compromising inferential tractability.
- Approximate Bayesian computation (ABC) has been proposed for tractable bias-mitigated inference in the presence of complex biases [5, 6].

### Methods



#### **Approximate Bayesian Computation Framework**

- Our proposed ABC framework assumes an ITC with gold-standard assessment in the treatment arm and error-prone assessment in the control arm.
- We assume error-prone control assessment manifests itself as a patient-specific delay in detection,  $\tau_i \sim \text{Exp}(\mu)$ , affecting a proportion  $\varphi$  of patients (Figure 1).
- Our proposed framework implements an ABC-rejection sampler for bias-mitigation with a user-specified survival model *f* (Figure 2).



FN : False negative

Figure 2: Posterior sampling of bias-mitigated effect estimates through ABC sampling.

| ABC-Rejection Sampler                                                                                                |                                                                                                                                                                                                         |                                                                    |                                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Step 1                                                                                                               | Step 2                                                                                                                                                                                                  | Step 3                                                             | Step 4                                                                                                                                                                            |  |  |  |  |
| Propose treatment effect: $m{	heta'} \sim p_{	heta}$ Propose ME parameters: $(\mu', \varphi') \sim p_{\mu, \varphi}$ | Simulate underlying survival: $y' \mid \boldsymbol{\theta}' \sim f$ $\tau_i \sim \operatorname{Exp}(\mu')$ $D_i \sim \operatorname{Bernoulli}(\varphi')$ $(D_i = 1 \Rightarrow \operatorname{delayed})$ | Simulate measurement error:  Mismeasured survival $\widetilde{y}'$ | Compare summary statistics between observed $y$ and simulated datasets $\widetilde{y}'$ , and accept $(\theta', \mu', \varphi')$ if: $d =  S(y), S(\widetilde{y}')  \le \epsilon$ |  |  |  |  |

 $t_{ik}$ : Assessment times

- ATB is simulated in step 3 by rounding survival to the nearest assessment time. Comparison of datasets in step 4 is performed using a 4-dimensional summary statistic (see below).
- Iteration of steps 1-4 outputs a posterior sample for  $\theta$  which is uncontaminated by measurement error and hence represents a bias-mitigated effect estimate.

### **Summary Statistics**

- ABC-simulated treatment and control arms are compared with their observed counterpart.
- Cumulative number of events are computed up to user-specified quantiles  $(q_1, q_2, q_3)$ , e.g. 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup> (Figure 3).
- When combined with the number of censored patients,  $N_c$ , vectors  $(N_1, N_2, N_3, N_c)$  are compared between datasets using the L1 norm:
- $d = |N_1 N_1| + |N_2 N_2| + |N_3 N_3| + |N_c N_c|.$

 Inverse probability of treatment (IPT) - weights can be applied to summary statistics to adjust for confounding.

### Simulation Study Assessment

- Two-arm confounded survival data was simulated under Eqs. (1) and (2) with measurement error, where the effect measure is the hazard ratio (HR).
- 12 scenarios were considered through varying  $\beta_1 = \log(HR)$ , average length of delay  $(1/\mu)$ , and control assessment cadence (3 or 6 months).
- Treatment assessment cadence,  $\varphi$ , and  $\exp(\beta_0)$ , were fixed to 1 month, 0.3, and 0.11, respectively.
- 200 data sets were simulated under each scenario and ABC estimates compared with naive Markov chain Monte Carlo (MCMC) estimates which ignored measurement error and confounding.
- IPT-weighting of observed summary statistics was implemented to adjust for confounding by  $u_i$ .
- 2,000 posterior samples were extracted when applying either method.

Figure 3: Comparison between datasets.



### **Survival Model**

$$y_i \sim \text{Exp}(\lambda_i), i = 1, ..., 400,$$
 (1)  
 $\lambda_i = \exp(\beta_0 + \beta_1 z_i + 0.26u_i),$   
 $u_i \sim \text{Bernoulli}(0.5), z_i = 0, 1,$   
 $\Pr(z_i = 1 \mid u_i) = \text{logit}^{-1}(-1 + 2u_i).$  (2)

### **Prior Specification**

$$\beta_1 \sim N(0,1),$$

$$\exp(\beta_0) \sim U(0.058, 0.693),$$

 $\mu \sim U(0.1, 1),$ 

 $\varphi \sim U(0.2, 0.5).$ 

### Objectives



- Develop an approximate Bayesian computation framework for measurement error mitigation in real-world indirect treatment comparisons with time-to-event outcomes.
- Assess the proposed ABC framework's ability for bias-mitigated estimation of relative treatment effects.
- Implement a simulation study which performs this assessment under varying degrees of measurement error.

### Results



**Table 1**: Comparison of log(HR) posterior estimates between the ABC framework and naive MCMC.

| Simulation<br>scenario <sup>1</sup> |           | Bias <sup>2,3</sup> |       | Posterior SD <sup>3,4</sup> |       | 95% credible interval coverage rate |       |
|-------------------------------------|-----------|---------------------|-------|-----------------------------|-------|-------------------------------------|-------|
| log(HR)                             | $1/\mu^5$ | ABC                 | Naive | ABC                         | Naive | ABC                                 | Naive |
|                                     |           |                     |       |                             |       |                                     |       |
| 0                                   | 3         | -0.028              | 0.354 | 0.170                       | 0.101 | 0.98                                | 0.04  |
|                                     | 6         | 0.058               | 0.429 | 0.163                       | 0.100 | 0.98                                | 0.01  |
|                                     |           |                     |       |                             |       |                                     |       |
| log(0.8)                            | 3         | -0.019              | 0.373 | 0.164                       | 0.100 | 0.98                                | 0.02  |
|                                     | 6         | 0.062               | 0.433 | 0.157                       | 0.101 | 0.97                                | 0.00  |
|                                     |           |                     |       |                             |       |                                     |       |
| log(0.2)                            | 3         | 0.016               | 0.411 | 0.157                       | 0.113 | 0.95                                | 0.00  |
|                                     | 6         | 0.106               | 0.499 | 0.152                       | 0.114 | 0.97                                | 0.00  |

1: Control cadence = 3 months, 2: Bias defined as estimate – truth, 3: Averaged over 200 simulations, 4: Standard deviation, 5: Average delay in detection.

Figure 4: Comparison of posterior mean estimates<sup>1</sup> of the log(HR) between the ABC framework and naive MCMC.

- With  $\epsilon = 45$ , ABC acceptance rates ranged from 0.16% - 0.35%.
- In Table 1, ABC bias ranged from -0.028 - 0.106compared to 0.354 - 0.499under naive MCMC.
- As the severity of measurement error increased, ABC performance decreased (Figure 4, top left) but was still superior compared to naive MCMC.



### Conclusions and future work



- Our proposed ABC framework provides a unified approach for successful bias-mitigated estimation of relative treatment effects under both measurement error and confounding
- In practice, careful calibration would be required to ensure successful application of the ABC framework, with external information regarding measurement error dynamics required to inform the magnitude of delay and its prevalence.
- These dynamics can be characterised either through assessment of a subset of data for which both gold-standard and error-prone assessment are observed, or through expert clinical elicitation.
- Future analyses will apply the ABC framework to empirical data and consider application of the ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. selection bias arising from left truncation.

### References



- 1. Hashmi M, Rassen J, Schneeweiss S. Single-arm oncology trials and the nature of external controls arms. Journal of Comparative Effectiveness Research. 2021;10:1053-66.
- 2. Sola-Morales O, Curtis LH, Heidt J, Walsh L, Casso D, Oliveria S, et al. Effectively Leveraging RWD for External Controls: A Systematic Literature Review of Regulatory and HTA Decisions. Clinical Pharmacology & Therapeutics. 2023;114:325-55.
- 3. Adamson BJS, Ma X, Griffith SD, Sweeney EM, Sarkar S, Bourla AB. Differential frequency in imaging-based outcome measurement: Bias in real-world oncology comparative-effectiveness studies. Pharmacoepidemiology and Drug Safety. 2022:31:46-54.

4. Ackerman B, Gan RW, Meyer CS, Wang JR, Zhang Y, Hayden J, et al. Measurement error and bias in real-world oncology

- endpoints when constructing external control arms. Front Drug Saf Regul. 2024;4. 5. Götte H, Kirchner M, Kieser M. Adjustment for exploratory cut-off selection in randomized clinical trials with survival endpoint. Biometrical Journal. 2020;62:627–42.
- 6. Götte H, Kirchner M, Sailer MO, Kieser M. Simulation-based adjustment after exploratory biomarker subgroup selection in phase II. Statistics in Medicine. 2017;36:2378-90.

# Introduction



- Real-world Indirect treatment comparisons (ITCs) allow for the generation of relative-efficacy evidence in settings where implementation of a randomised controlled trial is infeasible [1,2].
- However, real-world ITCs with time-to-event outcomes, such as presence of disease progression, are susceptible to measurement error bias.
- Sources of measurement error arise through differences between arms in assessment timing – inducing assessment time bias (ATB) – or through error-prone assessment – inducing outcome misclassification bias (OMB) [3, 4].
- Current methods for addressing measurement error are often limited to exclusively one source of error and lack generalisability to simultaneously address other forms of bias, e.g. confounding.
- Comprehensive approaches to bias mitigation requires statistical methods capable of complex model specification without compromising inferential tractability.
- Approximate Bayesian computation (ABC) has been proposed for tractable bias-mitigated inference in the presence of complex biases [5, 6].

# Objectives



- Develop an approximate Bayesian computation framework for measurement error mitigation in real-world indirect treatment comparisons with time-to-event outcomes.
- Assess the proposed ABC framework's ability for bias-mitigated estimation of relative treatment effects.
- Implement a simulation study which performs this assessment under varying degrees of measurement error.

# Methods



## **Approximate Bayesian Computation Framework**

- Our proposed ABC framework assumes an ITC with gold-standard assessment in the treatment arm and error-prone assessment in the control arm.
- We assume error-prone control assessment manifests itself as a patient-specific delay in detection,  $\tau_i \sim \text{Exp}(\mu)$ , affecting a proportion  $\varphi$  of patients (Figure 1).
- Our proposed framework implements an ABC-rejection sampler for biasmitigation with a user-specified survival model f (Figure 2).



Figure 2: Posterior sampling of bias-mitigated effect estimates through ABC sampling.

| ABC-Rejection Sampler                                                                                               |                                                                                                                                                                                                         |                                                                    |                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Step 1                                                                                                              | Step 2                                                                                                                                                                                                  | Step 3                                                             | Step 4                                                                                                                                                                            |  |  |  |
| Propose treatment effect: $\theta' \sim p_{\theta}$ Propose ME parameters: $(\mu', \varphi') \sim p_{\mu, \varphi}$ | Simulate underlying survival: $y' \mid \boldsymbol{\theta}' \sim f$ $\tau_i \sim \operatorname{Exp}(\mu')$ $D_i \sim \operatorname{Bernoulli}(\varphi')$ $(D_i = 1 \Rightarrow \operatorname{delayed})$ | Simulate measurement error:  Mismeasured survival $\widetilde{y}'$ | Compare summary statistics between observed $y$ and simulated datasets $\widetilde{y}'$ , and accept $(\theta', \mu', \varphi')$ if: $d =  S(y), S(\widetilde{y}')  \le \epsilon$ |  |  |  |

- ATB is simulated in step 3 by rounding survival to the nearest assessment time. Comparison of datasets in step 4 is performed using a 4-dimensional summary statistic (see next page).
- Iteration of steps 1-4 outputs a posterior sample for  $\theta$  which is uncontaminated by measurement error and hence represents a bias-mitigated effect estimate.

# Methods

# X

# **Summary Statistics**

- ABC-simulated treatment and control arms are compared with their observed counterpart.
- Cumulative number of events are computed up to user-specified quantiles  $(q_1, q_2, q_3)$ , e.g.  $25^{th}$ ,  $50^{th}$ ,  $75^{th}$  (Figure 3).
- When combined with the number of censored patients,  $N_c$ , vectors( $N_1$ ,  $N_2$ ,  $N_3$ ,  $N_c$ ) are compared between datasets using the L1 norm:

$$d = |N_1 - N_1| + |N_2 - N_2| + |N_3 - N_3| + |N_c - N_c|.$$

Inverse probability of treatment (IPT) weights can be applied to summary
statistics to adjust for confounding.





## Simulation Study Assessment

- Two-arm confounded survival data was simulated under Eqs. (1) and (2) with measurement error, where the effect measure is the hazard ratio (HR).
- 12 scenarios were considered through varying  $\beta_1 = \log(HR)$ , average length of delay  $(1/\mu)$ , and control assessment cadence (3 or 6 months).
- Treatment assessment cadence,  $\varphi$ , and  $\exp(\beta_0)$ , were fixed to 1 month, 0.3, and 0.11, respectively.
- 200 data sets were simulated under each scenario and ABC estimates compared with naive Markov chain Monte Carlo (MCMC) estimates which ignored measurement error and confounding.
- IPT-weighting of observed summary statistics was implemented to adjust for confounding by  $u_i$ .
- 2,000 posterior samples were extracted when applying either method.

### **Survival Model**

$$y_i \sim \text{Exp}(\lambda_i), i = 1, ..., 400, (1)$$

$$\lambda_i = \exp(\beta_0 + \beta_1 z_i + 0.26u_i),$$

$$u_i \sim \text{Bernoulli}(0.5)$$
,  $z_i = 0, 1$ ,

$$Pr(z_i = 1 \mid u_i) = logit^{-1}(-1 + 2u_i).$$
 (2)

### **Prior Specification**

$$\beta_1 \sim N(0,1),$$

$$\exp(\beta_0) \sim U(0.058, 0.693),$$

$$\mu \sim U(0.1, 1),$$

$$\varphi \sim U(0.2, 0.5).$$

# Results



Table 1: Comparison of log(HR) posterior estimates between the ABC framework and naive MCMC.

| Simulation scenario <sup>1</sup> |           | Bias <sup>2,3</sup> |       | Posterior SD <sup>3,4</sup> |       | 95% credible interval coverage rate |       |
|----------------------------------|-----------|---------------------|-------|-----------------------------|-------|-------------------------------------|-------|
| log(HR)                          | $1/\mu^5$ | ABC                 | Naive | ABC                         | Naive | ABC                                 | Naive |
|                                  |           |                     |       |                             |       |                                     |       |
| 0                                | 3         | -0.028              | 0.354 | 0.170                       | 0.101 | 0.98                                | 0.04  |
|                                  | 6         | 0.058               | 0.429 | 0.163                       | 0.100 | 0.98                                | 0.01  |
|                                  |           |                     |       |                             |       |                                     |       |
| log(0.8)                         | 3         | -0.019              | 0.373 | 0.164                       | 0.100 | 0.98                                | 0.02  |
|                                  | 6         | 0.062               | 0.433 | 0.157                       | 0.101 | 0.97                                | 0.00  |
|                                  |           |                     |       |                             |       |                                     |       |
| log(0.2)                         | 3         | 0.016               | 0.411 | 0.157                       | 0.113 | 0.95                                | 0.00  |
|                                  | 6         | 0.106               | 0.499 | 0.152                       | 0.114 | 0.97                                | 0.00  |

- 1: Control cadence = 3 months, 2: Bias defined as estimate truth, 3: Averaged over 200 simulations,
- 4: Standard deviation, 5: Average delay in detection.

• With  $\epsilon = 45$ , ABC acceptance rates ranged from 0.16% - 0.35%.

- In Table 1, ABC bias ranged from -0.028 – 0.106 compared to 0.354 – 0.499 under naive MCMC.
- As the severity of measurement error increased, ABC performance decreased (Figure 4, top left) but was still superior compared to naive MCMC.

Figure 4: Comparison of posterior mean estimates<sup>1</sup> of the log(HR) between the ABC framework and naive MCMC.



# Conclusions and future work



- Our proposed ABC framework provides a unified approach for successful bias-mitigated estimation of relative treatment effects under both measurement error and confounding
- In practice, careful calibration would be required to ensure successful application of the ABC framework, with external information regarding measurement error dynamics required to inform the magnitude of delay and its prevalence.
- These dynamics can be characterised either through assessment of a subset of data for which both gold-standard and error-prone assessment are observed, or through expert clinical elicitation.
- Future analyses will apply the ABC framework to empirical data and consider application of the ABC approach for bias-mitigation to other forms of measurement error and bias, e.g. selection bias arising from left truncation.

# References



- 1. Hashmi M, Rassen J, Schneeweiss S. Single-arm oncology trials and the nature of external controls arms. Journal of Comparative Effectiveness Research. 2021;10:1053–66.
- 2. Sola-Morales O, Curtis LH, Heidt J, Walsh L, Casso D, Oliveria S, et al. Effectively Leveraging RWD for External Controls: A Systematic Literature Review of Regulatory and HTA Decisions. Clinical Pharmacology & Therapeutics. 2023;114:325–55.
- 3. Adamson BJS, Ma X, Griffith SD, Sweeney EM, Sarkar S, Bourla AB. Differential frequency in imaging-based outcome measurement: Bias in real-world oncology comparative-effectiveness studies. Pharmacoepidemiology and Drug Safety. 2022;31:46–54.
- 4. Ackerman B, Gan RW, Meyer CS, Wang JR, Zhang Y, Hayden J, et al. Measurement error and bias in real-world oncology endpoints when constructing external control arms. Front Drug Saf Regul. 2024;4.
- 5. Götte H, Kirchner M, Kieser M. Adjustment for exploratory cut-off selection in randomized clinical trials with survival endpoint. Biometrical Journal. 2020;62:627–42.
- 6. Götte H, Kirchner M, Sailer MO, Kieser M. Simulation-based adjustment after exploratory biomarker subgroup selection in phase II. Statistics in Medicine. 2017;36:2378–90.